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Diffusion-limited aggregation with power-law pinning
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Using stochastic conformal mapping techniques we study the patterns emerging from Laplacian growth with
a power-law decaying threshold for growRy ” (whereRy is the radius of thé&\-particle cluster. For y>1 the
growth pattern is in the same universality class as diffusion limited aggreg@ioh), while for y<1 the
resulting patterns have a lower fractal dimendidfy) than a DLA cluster due to the enhancement of growth
at the hot tips of the developing pattern. Our results indicate that a pinning transition occursl1é?,
significantly smaller than might be expected from the lower boupg=0.67 of multifractal spectrum of
DLA. This limiting case shows that the most singular tips in the pruned cluster now correspond to those
expected for a purely one-dimensional line. Using multifractal analysis, analytic expressions are established for
D() both close to the breakdown of DLA universality class, iyes1, and close to the pinning transition,

ie., y=1/2.
DOI: 10.1103/PhysReVvE.69.011403 PACS nunier61.43.Hv, 05.45.Df
[. INTRODUCTION lower-dimensional shapes for which the multifractal spec-

trum is necessarily different from that of DLA. We study this
Nonequilibrium growth models leading naturally to self- transition in terms of the fractal dimensidd(y) of the
organized fractal structures, such as diffusion limited aggreemerging patterns, and we derive analytic expressions for the
gation(DLA) [1], are of continuing interest due to their rel- behavior ofD(y) in the rangey<1 where the DLA univer-
evance for many important physical processes includingality class breaks down ang=1/2 close to the pinning
dielectric breakdowr{2], electrochemical depositiof8,4], transition.
and Laplacian flow5].

A powerful method, namely, iterated stochastic conformal II. MODEL AND THEORETICAL BACKGROUND
mapping[6,7], has been already successfully applied to gen- _
erate and analyze DLJ8,9] and Laplaciarf10] growth pat- Witten and Sandefl] have shown that the growth prob-

terns in two dimensions. This has provided an alternativeability at any points on the boundary of a DLA cluster of
way to address many of the important open questions relatdgngth L is given by the harmonic measure(s)=|VV
to pattern formation in DLA in two dimensions, one of these(s)|/fgds’|VV(s')|, whereV(r) obeys Laplace’s equation
being the existence of minimal fields for growth at the V2V=0 subject to the boundary conditions=0 on the
boundary of the growing cluster. In previous wdrkl] we  (evolving boundary of the cluster and~Inr asr—« (cor-
studied the properties induced byired material dependent responding to a uniform flux of particles far away from the
critical field E, for growth, and showed that in the presenceclustej.
of such a threshold all clusters ultimately become pinned The model we study is a variant of the two-dimensional
and, in addition, this simple constraint has remarkable conbLA growth model described above in which growth is dis-
sequences for the resulting patterns—the rich, brancheallowed at points on the cluster boundary where the probabil-
structure of DLA is replaced by a much lower-dimensionality for growth is smaller than a critical valuRy,”, whereRy
shape consisting of a few surviving branches. (the exact meaning will be defined latés the radius of the
In this paper we address a similar, but significantly moreN patrticle cluster, i.e.,
important question because of its relationship to the multi-

fractal spectrum of DLA, that of what happens when there |[VV(s)|

exists a critical field for growth on the boundary of the clus- L ©VV|>Ry”
ter, field decaying likeRy” as the cluster increases in size. Pgrow(S) = f Ol y—a(s')]|VV(s')|ds’

We shall call this model the ¥ model.” As we will show 0

below, asy decreases fromy>1 toward a critical valuey 0, |VV|<Ry”,

=1/2 (which corresponds to the most singular possible be- (1)

havior for the Laplacian field, i.e., that occurring at the tip of

a line), there is a continuous transition from DLA toward Where«(s’) is the multifractal exponent at poist on the
cluster boundaryl is the length of the boundary, and the
step functiond(y— a(s')) ensures that only those regions of

*Electronic address: phshgeh@physics.emory.edu the cluster boundary obeyin V(s')|>Ry” contribute to
"Electronic address: popescu@mf.mpg.de the normalization integral. Estimates of this integral will be
*Electronic address: phyff@emory.edu very important in our analysis of the fractal dimension of the
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growing “vy cluster.” Since we need to calculate the har- composition, Eq(4), appears at first sight to be a standard

monic measure on a freely evolving interface, this is handledteration of stochastic maps, this is not so because the order

by using conformal mapping techniques 8]. The method of iterations is inverted—the last point of the trajectory is the

was presented in great detail in Rd#8,8], and thus here we inner argument in this iteration. As a result the transition

will just briefly review the main results. from ®""1(w) to ®M(w) is achieved by composing thre
The basic idea is to follow the evolution of the conformal former maps, Eq(4), starting from a different seed. Finally,

mappingz=®("(w) of the exterior of the unit circle in a identifying [8] the radiusR, of the growing pattern with the

mathematicato plane onto the complement of the cluster of coefficientF{" =1II"_,(1+\;)? in the Laurent expansion of

n particles in the physicat plane rather than directly the &M,

evolution of the cluster’s boundary. The initial condition is

chosen to bed©(w)=w. The process of adding a new PM(0)=FNo+FV+FM o *+FNew2+..., (7)

“particle” of constant shape and linear scal’a_o to the clus-

ter of (n—1) particles at a positios which is chosen ran- the constraint to grow only at values @fwhich obey Eq(1)

domly according to the harmonic measure is described via translates into

function ¢, 4(w), where

— > (F{" )7, 8
¢x,o(w):wl_a[(12+w)\)(l+ w)|l+o (@M=D) (")) 7
12 a This constraint is implemented as follows. At stepé,, is
tol 14 1 E 1-A B 1] by o(w) choosen from a uniform distribution in (072, independent
w2 o l1+\ A6 of previous history. If it obeys the constraint given by Eg).
_ _ accept this value ofl,, otherwise repeat until the constraint
=e'"p, e ), (2 is obeyed.

which conformally maps the unit circle to the unit circle with
a bump of linear size/\ localized at the angular position
[6]. The shape of the bump depends on the parameter  For the model defined in Sec. Il one would expect the
Following the analysis in Ref.8], we have used=0.66 resultant patterns to have fractal shapes which depeng on
througout this paper, as we believe the large scale asymptotignd in order to characterize these shapes we will focus on the
properties will not be affected by the microscopic shape okcaling behavior of the first Laurent coefficigif" . Follow-

the added bump. _ ing the arguments in Ref8], for a given valuey one ex-
The conformal map for an-particle cluster®™(w) can pects a scaling law of the form

be built by adding one particle to am{ 1)-particle cluster
® ("~ U(w), resulting in the recursive dynamics, F(M D), (9)

() =D D¢, |, (), 3

IlI. RESULTS AND DISCUSSION

whereD(y) is the effective fractal dimension of the resulting

: . . . cluster.
which can be solved in terms of iterations of the elementary We have simulated the model defined in Sec

b Il for a
ump mape, 5, (@), number of valuesy in the range 1/Z y<1.6 and we have
calculated F{" as an average over 100 clusteifer
O(w) =y yobr, a0 by o (0. (@ 1 g aifor

>0.65), and, respectively, over 20 clusté¢ier y<0.65) of
In Egs. (3) and (4) the angled, e (0,27] at stepn is ran- size N=40000. In Fig. 1 we show typical clusters of size

domly chosen since the harmonic measure on the real clust =40 QOO fory=1.20, 0.'75' and 0.55, respectively. It can
translates to a uniform measure on the unit circle in the’© easily seen that the rich, branched structure of the cluster

mathematical plane, at y=1.20 changes, ag decreases towargt=0.55, into a
much lower-dimensional shape with only a few branches sur-
0 viving. This can be intuitively understood by considering the
P(s)ds=5—, (5 effect the pinning probabilityR, ” has on the multifractal
spectrum of the cluster. From multifractal scalifi—14
and we know that the interface of a fully developed DLA cluster
consists of sets OND,_A(a)~R;DLA(“) sites with growing

N Ao ©) probabilities|VV|~R, ¢, and we will assume that such a
n |(I)(n71)’(ei0n)|2’ structure is also valid for the clusters grown with pinning
probability R, ”. As growth proceeds, the lowest probability
is chosen in order to ensure that the size of the bump in thsites (large «), normally deep in the fjords, will be pinned
physicalz plane isy\,. Sincey, is a natural length scale first, with the hot tips surviving longest, leading to “prun-
in the problem, it can be scaled out by measuring all théng” of the branches where the tips have a singularity
lengths in terms of it. We reemphasize here that although the> y.
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FIG. 1. Typical clustergsize N=40 000) grown with(a) y=1.20, (b) y=0.75, and(c) y=0.55, respectively.

As anticipated, for all the values G5y<1.2 that we cluster, i.e.,D(y>1)—Dp a=1.71, while for y=1/2 the
have tested the coefficieﬁtﬁ”) has a clear power-law depen- behavior of the radiu§(1”) tends ton, i.e.,D(y—1/2)—1,
dence on the size, as shown in Fig. @). Assuming the thus the behavior of a growing line.
exponent 1D(y) to be related to a fractal dimension as In order to understand these results theoretically let us
given by Eq.(9), the dependenci () [shown in Fig. 2b)]  begin with a very simple argument based on the assumption
is obtained from a power-law fit to the data. It can be seerthat the clusters have a multifractal spectrum in the sense
that at values ofy=1 the behavior is close to that of a DLA described above, in that the interface consists of sets of
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FIG. 2. (a) F(l") as a function of for clusters grown withy=1.20, 0.75, 0.65, and 0.55, respectivélyg-log ploY). Also shown(dashed
lines) are the limit cases of a DLA clusteff{” ~n'Pota, whereDp ,=1.71, and of a line clustef{”~n, respectively(b) The effective
fractal dimensiorD(y) obtained fronF(ln)~nl’D(7) as a function ofy (circles. The dotted line is just a guide to the eye. The solid line is
the theoretical predictiofEq. (13)] with fp A(7y) from Ref.[15].
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FIG. 3. (a) Average number of attempts for growing clusters of sides20 000(dashed lineandN= 40 000(solid line), scaled by the

actual size of the cluster, respectively, as functiornydb) The multifractal spectrunfi(y) from Eq. (15) (symbol3 in comparison with the
multifractal spectrum of DLA(solid line) from Ref.[15].

N (a)~R" sites with growth probabilitie$V V|~ R, ¢ This prediction may be tested using the recently computed
J n o : N foLa(a@) spectrum[15]. The results are shown in Fig(i9)

Since the constraint will cutoff growth at regions in the clus- DLAL®. X ' X

ter with exponents in the range>ry of the multifractal (solid line), and it can be seen that for=1 the theoretical

spectrum, we can write down the following equation for thePredictions are indeed close to the measured vallieg).

rate of growth of the cluster in the presence of the barrier inf "€ discrepancies at smaller valuesyoéan be attributed to

terms of the rate of growth of a DL/o barrier for growth the fact that the multifractal spectrum of the clus_ter is not
exactly the one of DLA, and whep— 1/2, as we will now

cluster discuss, it actually may be expected to deviate significantly
dR dR Y ) -1 from that of a DLA.
an/ T laN ( f daC(a)R : For y=1/2, the change in the multifractal spectrum from
Y DLAL = “min that for DLA is significant. For example, it is known5,16

where f (a;)=0. The enhancement of growth comes from that for the DLA spectrumzy,,=0.67, while we see that
Eq. (1) together with the estimate growth continues significantly below this value, with;,
=1/2 being the asymptotic limit. Our simulations show

L , ) Y () strong evidence for this limit, as can be seen in Fi@):3he
o 0(y—a(s))|VV(s')[ds'~ o da C(a)R'Y - average number of attempts for growing clusters of sites
mn (10 ~ =20000 andN=40000 (scaled by the actual size of the

cluste) exibits a steep increase &s-0.5.
Now, we know that the harmonic measure is concentrated at We shall assume that for these highly prungdlusters
a=1, and thus fory>1 the integral is dominated by the there is a well defined limiting form for the multifractal spec-
value of the integrand a#=1, while for y=<1 it is domi-  trum f («) defined for 1/2Z2a<y and obeyingf (1/2)

nated by the value af, and thus =0, which is a monotonically increasing function ¢f De-
fining 7(y)=fy(y), we can use a reasoning similar to that
(d_R> N(d_R) (Kw? for y>1 11) used by Turkevich and Shed6] in their estimate of the
dN y dN/pa [RY A for y=1, fractal dimension of DLA to estimaté(y). The idea is that

) ) ) for y=1/2 only the “hottest” tips contribute to growth, and
where K(y) is some constant independent Nf Equation s one can write
(11) therefore implies
dR -1

Dpia for y>1 hath Y _p-1/2 fy f (@)«
aN i Pmax—R llzdch(a)RY

D(Y):{DDLA-i-fy(y)—'y for y=<1. (12)

For the case wherg=<1, i.e., close to the breakdown in ~RVEIy, (14
the DLA universality class, we may assume that the multi- . _
fractal spectrum of the cluster is only weakly perturbed fromwhere the last relation follows from the fact that the integral

its value in DLA and thereforé, (y)~fp a(¥), or is dominated by the value of the integrandsat Thus, we
obtain
DDLA f0r ’y>1
D(y)=[ ~ _ (13 .
Doiatfpraly)—y for y=1. f(y)=D(y)+y—3/2. (15
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Since from simulations we know the valuBgvy), Eq. (15 patterns in the DLA universality class for>1 to clusters
(which is valid for y=0.5) allows the calculation of the up- with a lower fractal dimensioD(y) for y<1 due to the
per multifractal exponenf(y). As shown in Fig. &), the = enhancement of growth at the hot tips. We have presented
pinning thresholdR™~ 7 leads to a shifting of the multifractal evidence thaty=1/2, corresponding to the singularities at
spectrum fora<y to the left, i.e.,f (@)>fp () (more the tip of a purely one-dimensiondine) growth pattern, is
hot tips, and larger fields at those hot tips, due to pruning the lower limit for growth, with all clusters becoming ulti-
These results can be intuitively understood as a flow ofmately pinned fory<1/2. By using multifractal analysis, we
singularities away fromy (which acts as an unstable fixed have proposed analytic expressions Bxy) for both y=1
point of the dynamics For any particular value,<y, what ~ near the breakdown of the DLA universality class and near
happens while the cluster evolves is that screening is reducdfie pinning transitiony=1/2. Finally, we have shown that in
compared to DLA and therefore there is a flow of singulari-the smally range the multifractal spectrum of the resulting
ties ag— ey With a;< aq. In addition, new singularities with ~ cluster is significantly changed from that of a DLA. We have

a<a® can be created. Thus, we would expect that thesuggested that this change may be due to a flow of singulari-
number of singularities\’,(a;) ~Npa(ao) or ties with y acting as an unstable fixed point of the _dynamu_:s,
but further work will be necessary to fully elucidate this

flaz(@o))~TpLaleo). (16)  point.
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