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Diffusion-limited aggregation with power-law pinning
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Using stochastic conformal mapping techniques we study the patterns emerging from Laplacian growth with
a power-law decaying threshold for growthRN

2g ~whereRN is the radius of theN-particle cluster!. Forg.1 the
growth pattern is in the same universality class as diffusion limited aggregation~DLA !, while for g,1 the
resulting patterns have a lower fractal dimensionD(g) than a DLA cluster due to the enhancement of growth
at the hot tips of the developing pattern. Our results indicate that a pinning transition occurs atg51/2,
significantly smaller than might be expected from the lower boundamin.0.67 of multifractal spectrum of
DLA. This limiting case shows that the most singular tips in the pruned cluster now correspond to those
expected for a purely one-dimensional line. Using multifractal analysis, analytic expressions are established for
D(g) both close to the breakdown of DLA universality class, i.e.,g&1, and close to the pinning transition,
i.e., g*1/2.

DOI: 10.1103/PhysRevE.69.011403 PACS number~s!: 61.43.Hv, 05.45.Df
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I. INTRODUCTION

Nonequilibrium growth models leading naturally to se
organized fractal structures, such as diffusion limited agg
gation~DLA ! @1#, are of continuing interest due to their re
evance for many important physical processes includ
dielectric breakdown@2#, electrochemical deposition@3,4#,
and Laplacian flow@5#.

A powerful method, namely, iterated stochastic conform
mapping@6,7#, has been already successfully applied to g
erate and analyze DLA@8,9# and Laplacian@10# growth pat-
terns in two dimensions. This has provided an alterna
way to address many of the important open questions rel
to pattern formation in DLA in two dimensions, one of the
being the existence of minimal fields for growth at t
boundary of the growing cluster. In previous work@11# we
studied the properties induced by afixed, material dependen
critical field Ec for growth, and showed that in the presen
of such a threshold all clusters ultimately become pinn
and, in addition, this simple constraint has remarkable c
sequences for the resulting patterns—the rich, branc
structure of DLA is replaced by a much lower-dimension
shape consisting of a few surviving branches.

In this paper we address a similar, but significantly mo
important question because of its relationship to the mu
fractal spectrum of DLA, that of what happens when the
exists a critical field for growth on the boundary of the clu
ter, field decaying likeRN

2g as the cluster increases in siz
We shall call this model the ‘‘g model.’’ As we will show
below, asg decreases fromg.1 toward a critical valueg
51/2 ~which corresponds to the most singular possible
havior for the Laplacian field, i.e., that occurring at the tip
a line!, there is a continuous transition from DLA towar
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lower-dimensional shapes for which the multifractal spe
trum is necessarily different from that of DLA. We study th
transition in terms of the fractal dimensionD(g) of the
emerging patterns, and we derive analytic expressions for
behavior ofD(g) in the rangeg&1 where the DLA univer-
sality class breaks down andg*1/2 close to the pinning
transition.

II. MODEL AND THEORETICAL BACKGROUND

Witten and Sander@1# have shown that the growth prob
ability at any points on the boundary of a DLA cluster o
length L is given by the harmonic measureP(s)5u“V
(s)u/*0

Lds8u“V(s8)u, whereV(r ) obeys Laplace’s equation
¹2V50 subject to the boundary conditionsV50 on the
~evolving! boundary of the cluster andV; ln r asr→` ~cor-
responding to a uniform flux of particles far away from th
cluster!.

The model we study is a variant of the two-dimension
DLA growth model described above in which growth is di
allowed at points on the cluster boundary where the proba
ity for growth is smaller than a critical valueRN

2g , whereRN

~the exact meaning will be defined later! is the radius of the
N particle cluster, i.e.,

Pgrow~s!55
u¹V~s!u

E
0

L

u@g2a~s8!#u¹V~s8!uds8

, u¹Vu.RN
2g

0, u¹Vu,RN
2g ,

~1!

wherea(s8) is the multifractal exponent at points8 on the
cluster boundary,L is the length of the boundary, and th
step functionu„g2a(s8)… ensures that only those regions
the cluster boundary obeyingu“V(s8)u.RN

2g contribute to
the normalization integral. Estimates of this integral will b
very important in our analysis of the fractal dimension of t
©2004 The American Physical Society03-1
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HENTSCHEL, POPESCU, AND FAMILY PHYSICAL REVIEW E69, 011403 ~2004!
growing ‘‘g cluster.’’ Since we need to calculate the ha
monic measure on a freely evolving interface, this is hand
by using conformal mapping techniques@6,8#. The method
was presented in great detail in Refs.@6,8#, and thus here we
will just briefly review the main results.

The basic idea is to follow the evolution of the conform
mappingz5F (n)(v) of the exterior of the unit circle in a
mathematicalv plane onto the complement of the cluster
n particles in the physicalz plane rather than directly th
evolution of the cluster’s boundary. The initial condition
chosen to beF (0)(v)5v. The process of adding a ne
‘‘particle’’ of constant shape and linear scaleAl0 to the clus-
ter of (n21) particles at a positions which is chosen ran-
domly according to the harmonic measure is described v
function fl,u(v), where

fl,0~v!5v12aH ~11l!

2v
~11v!F11v

1vS 11
1

v2
2

2

v

12l

11l D 1/2G21J a

fl,u~v!

5eiufl,0~e2 iuv!, ~2!

which conformally maps the unit circle to the unit circle wi
a bump of linear sizeAl localized at the angular positionu
@6#. The shape of the bump depends on the parametea.
Following the analysis in Ref.@8#, we have useda50.66
througout this paper, as we believe the large scale asymp
properties will not be affected by the microscopic shape
the added bump.

The conformal map for ann-particle clusterF (n)(v) can
be built by adding one particle to an (n21)-particle cluster
F (n21)(v), resulting in the recursive dynamics,

F (n)~v!5F (n21)
„fln ,un

~v!…, ~3!

which can be solved in terms of iterations of the element
bump mapfln ,un

(v),

F (n)~v!5fl1 ,u1
+fl2 ,u2

+•••+fln ,un
~v!. ~4!

In Eqs. ~3! and ~4! the angleunP(0,2p# at stepn is ran-
domly chosen since the harmonic measure on the real clu
translates to a uniform measure on the unit circle in
mathematical plane,

P~s!ds5
du

2p
, ~5!

and

ln5
l0

uF (n21)8~eiun!u2
, ~6!

is chosen in order to ensure that the size of the bump in
physicalz plane isAl0. SinceAl0 is a natural length scale
in the problem, it can be scaled out by measuring all
lengths in terms of it. We reemphasize here that although
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composition, Eq.~4!, appears at first sight to be a standa
iteration of stochastic maps, this is not so because the o
of iterations is inverted—the last point of the trajectory is t
inner argument in this iteration. As a result the transiti
from F (n21)(v) to F (n)(v) is achieved by composing then
former maps, Eq.~4!, starting from a different seed. Finally
identifying @8# the radiusRn of the growing pattern with the
coefficientF1

(n)5P i 51
n (11l i)

a in the Laurent expansion o
F (n),

F (n)~v!5F1
(n)v1F0

(n)1F21
(n)v211F22

(n)v221•••, ~7!

the constraint to grow only at values ofu which obey Eq.~1!
translates into

1

u@F (n21)#8~eiu!u
.~F1

(n21)!2g. ~8!

This constraint is implemented as follows. At stepn, un is
choosen from a uniform distribution in (0,2p#, independent
of previous history. If it obeys the constraint given by Eq.~8!
accept this value ofun , otherwise repeat until the constrain
is obeyed.

III. RESULTS AND DISCUSSION

For the model defined in Sec. II one would expect t
resultant patterns to have fractal shapes which depend og,
and in order to characterize these shapes we will focus on
scaling behavior of the first Laurent coefficientF1

(n) . Follow-
ing the arguments in Ref.@8#, for a given valueg one ex-
pects a scaling law of the form

F1
(n);n1/D(g), ~9!

whereD(g) is the effective fractal dimension of the resultin
cluster.

We have simulated the model defined in Sec. II for
number of valuesg in the range 1/2<g<1.6 and we have
calculated F1

(n) as an average over 100 clusters~for g
.0.65), and, respectively, over 20 clusters~for g<0.65) of
size N540 000. In Fig. 1 we show typical clusters of siz
N540 000 forg51.20, 0.75, and 0.55, respectively. It ca
be easily seen that the rich, branched structure of the clu
at g51.20 changes, asg decreases towardg50.55, into a
much lower-dimensional shape with only a few branches s
viving. This can be intuitively understood by considering t
effect the pinning probabilityRn

2g has on the multifractal
spectrum of the cluster. From multifractal scaling@12–14#
we know that the interface of a fully developed DLA clust
consists of sets ofNDLA(a);Rn

f DLA(a) sites with growing
probabilities u“Vu;Rn

2a , and we will assume that such
structure is also valid for the clusters grown with pinnin
probabilityRn

2g . As growth proceeds, the lowest probabili
sites~large a), normally deep in the fjords, will be pinne
first, with the hot tips surviving longest, leading to ‘‘prun
ing’’ of the branches where the tips have a singular
a.g.
3-2



DIFFUSION-LIMITED AGGREGATION WITH POWER- . . . PHYSICAL REVIEW E 69, 011403 ~2004!
FIG. 1. Typical clusters~sizeN540 000) grown with~a! g51.20, ~b! g50.75, and~c! g50.55, respectively.
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As anticipated, for all the values 0.5<g<1.2 that we
have tested the coefficientF1

(n) has a clear power-law depen
dence on the sizen, as shown in Fig. 2~a!. Assuming the
exponent 1/D(g) to be related to a fractal dimension a
given by Eq.~9!, the dependencyD(g) @shown in Fig. 2~b!#
is obtained from a power-law fit to the data. It can be se
that at values ofg*1 the behavior is close to that of a DL
01140
n

cluster, i.e.,D(g.1)→DDLA.1.71, while for g>1/2 the
behavior of the radiusF1

(n) tends ton, i.e., D(g→1/2)→1,
thus the behavior of a growing line.

In order to understand these results theoretically let
begin with a very simple argument based on the assump
that the clusters have a multifractal spectrum in the se
described above, in that the interface consists of sets
is
FIG. 2. ~a! F1
(n) as a function ofn for clusters grown withg51.20, 0.75, 0.65, and 0.55, respectively~log-log plot!. Also shown~dashed

lines! are the limit cases of a DLA cluster,F1
(n);n1/DDLA, whereDDLA51.71, and of a line clusterF1

(n);n, respectively.~b! The effective
fractal dimensionD(g) obtained fromF1

(n);n1/D(g) as a function ofg ~circles!. The dotted line is just a guide to the eye. The solid line
the theoretical prediction@Eq. ~13!# with f DLA(g) from Ref. @15#.
3-3
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FIG. 3. ~a! Average number of attempts for growing clusters of sizesN520 000~dashed line! andN540 000~solid line!, scaled by the

actual size of the cluster, respectively, as function ofg ~b! The multifractal spectrumf̃ (g) from Eq. ~15! ~symbols! in comparison with the
multifractal spectrum of DLA~solid line! from Ref. @15#.
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Ng(a);Rn
f g(a) sites with growth probabilitiesu“Vu;Rn

2a .
Since the constraint will cutoff growth at regions in the clu
ter with exponents in the rangea.g of the multifractal
spectrum, we can write down the following equation for t
rate of growth of the cluster in the presence of the barrie
terms of the rate of growth of a DLA~no barrier for growth!
cluster

S dR

dND
g

;S dR

dND
DLA

S E
amin

g

daC~a!Rf g(a)2aD 21

,

where f (amin)50. The enhancement of growth comes fro
Eq. ~1! together with the estimate

E
0

L

u~g2a~s!!u“V~s8!uds8;E
amin

g

da C~a!Rf g(a)2a.

~10!

Now, we know that the harmonic measure is concentrate
a51, and thus forg.1 the integral is dominated by th
value of the integrand ata51, while for g&1 it is domi-
nated by the value atg, and thus

S dR

dND
g

;S dR

dND
DLA

3H K~g! for g.1

Rg2 f g(g) for g&1,
~11!

where K(g) is some constant independent ofN. Equation
~11! therefore implies

D~g!5H DDLA for g.1

DDLA1 f g~g!2g for g&1.
~12!

For the case whereg&1, i.e., close to the breakdown i
the DLA universality class, we may assume that the mu
fractal spectrum of the cluster is only weakly perturbed fro
its value in DLA and thereforef g(g)' f DLA(g), or

D~g!5H DDLA for g.1

DDLA1 f DLA~g!2g for g&1.
~13!
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This prediction may be tested using the recently compu
f DLA(a) spectrum@15#. The results are shown in Fig. 2~b!
~solid line!, and it can be seen that forg.1 the theoretical
predictions are indeed close to the measured valuesD(g).
The discrepancies at smaller values ofg can be attributed to
the fact that the multifractal spectrum of the cluster is n
exactly the one of DLA, and wheng→1/2, as we will now
discuss, it actually may be expected to deviate significan
from that of a DLA.

For g*1/2, the change in the multifractal spectrum fro
that for DLA is significant. For example, it is known@15,16#
that for the DLA spectrumamin.0.67, while we see tha
growth continues significantly below this value, withamin
51/2 being the asymptotic limit. Our simulations sho
strong evidence for this limit, as can be seen in Fig. 3~a!: the
average number of attempts for growing clusters of sizeN
520 000 andN540 000 ~scaled by the actual size of th
cluster! exibits a steep increase asg→0.5.

We shall assume that for these highly prunedg-clusters
there is a well defined limiting form for the multifractal spe
trum f g(a) defined for 1/2,a,g and obeying f g(1/2)
50, which is a monotonically increasing function ofg. De-
fining f̃ (g)5 f g(g), we can use a reasoning similar to th
used by Turkevich and Sher@16# in their estimate of the
fractal dimension of DLA to estimatef̃ (g). The idea is that
for g*1/2 only the ‘‘hottest’’ tips contribute to growth, an
thus one can write

S dR

dND
g

;Pmax;R21/2S E
1/2

g

da C~a!Rf g(a)2aD 21

;R21/22 f̃ (g)1g, ~14!

where the last relation follows from the fact that the integ
is dominated by the value of the integrand atg. Thus, we
obtain

f̃ ~g!5D~g!1g23/2. ~15!
3-4
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Since from simulations we know the valuesD(g), Eq. ~15!
~which is valid forg*0.5) allows the calculation of the up
per multifractal exponentf̃ (g). As shown in Fig. 3~b!, the
pinning thresholdR2g leads to a shifting of the multifracta
spectrum fora,g to the left, i.e.,f g(a). f DLA(a) ~more
hot tips, and larger fields at those hot tips, due to prunin!.

These results can be intuitively understood as a flow
singularities away fromg ~which acts as an unstable fixe
point of the dynamics!. For any particular valuea0,g, what
happens while the cluster evolves is that screening is redu
compared to DLA and therefore there is a flow of singula
tiesa0→a1 with a1,a0. In addition, new singularities with
a,amin

(DLA) , can be created. Thus, we would expect that
number of singularitiesNg(a1)'NDLA(a0) or

f g„a1~a0!…' f DLA~a0!. ~16!

On the other hand fora0.g the singularity flowa0→a1
can only act toward an increasea1>a0 since such points
can never grow and thus can only either keep their orig
singularity or get a higher value ofa during growth.

IV. CONCLUSIONS

Using the stochastic conformal mapping techniques
have studied the patterns emerging from Laplacian gro
with a power-law decaying threshold for growthRN

2g , g
>1/2. We have shown that due to the enhancemen
growth at the hot tips asg decreases the growth evolves fro
ev

Y.

.
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patterns in the DLA universality class forg.1 to clusters
with a lower fractal dimensionD(g) for g,1 due to the
enhancement of growth at the hot tips. We have presen
evidence thatg51/2, corresponding to the singularities
the tip of a purely one-dimensional~line! growth pattern, is
the lower limit for growth, with all clusters becoming ulti
mately pinned forg,1/2. By using multifractal analysis, we
have proposed analytic expressions forD(g) for both g&1
near the breakdown of the DLA universality class and n
the pinning transitiong*1/2. Finally, we have shown that in
the smallg range the multifractal spectrum of the resultin
cluster is significantly changed from that of a DLA. We ha
suggested that this change may be due to a flow of singu
ties withg acting as an unstable fixed point of the dynami
but further work will be necessary to fully elucidate th
point.
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